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Figure 1: An avatar outfitted in a knitted T-shirt with 14K vertices is doing Karate. We’ve simulated the garment using our
homogenized yarn-level constitutive model, achieving 15FPS on a standard CPU. A key distinction of our model lies in its
numerical stability, even with large time steps (up to 1/30 seconds). This enables our model to maintain yarn-level cloth be-
haviors, such as curliness, without sacrificing stability for accuracy. Most notably, our model boosts simulation efficiency,
reducing computational time by at least two orders of magnitude compared to other homogenized models.

ABSTRACT

Real-world fabrics, composed of threads and yarns, often display
complex stress-strain relationships, making their homogenization
a challenging task for fast simulation by continuum-based models.
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Consequently, existing homogenized yarn-level models frequently
struggle with numerical stability without line search at large time
steps, forcing a trade-off between model accuracy and stability. In
this paper, we propose a neural-assisted homogenized constitu-
tive model for simulating yarn-level cloth. Unlike analytic models,
a neural model is advantageous in adapting to complex dynamic
behaviors, and its inherent smoothness naturally mitigates stabil-
ity issues. We also introduce a sector-based warm-start strategy
to accelerate the data collection process in homogenization. This
model is trained using collected strain energy datasets and its ac-
curacy is validated through both qualitative and quantitative ex-
periments. Thanks to our model’s stability, our simulator can now
achieve two-orders-of-magnitude speedups with large time steps
compared to previous models.
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1 INTRODUCTION

Yarn-level cloth simulation, a field pioneered by Kaldor et al. [2008;
2010], significantly enhances the visual detail of knitted fabrics,
showcasing features like curling effects. Subsequent researchers
have introduced innovations such as persistent contact modeling
[Cirio et al. 2016] and the integration of triangles with yarns in
simulators [Casafranca et al. 2020] to increase simulation speed.
However, despite these advancements, simulating yarn-level cloth
remains computationally demanding with modern graphics hard-
ware.

To enhance efficiency, Sperl et al. [2020] introduced a numer-
ical homogenization method for yarn-level cloth (HYLC) simula-
tion. This method relies on providing the yarn’s physical proper-
ties, such as Young’s modulus, and twisting and bending moduli,
as well as the local geometric yarn pattern. A homogenization pro-
cedure is then developed to approximate the strain energy density
function through yarn pattern simulation. It then defines the strain
energy as a function of the combination of the first and second fun-
damental forms which determine the deformation of the local pla-
nar patch. We refer the fundamental forms space as HYLC strain
space. HYLC employs Hermite interpolation over the strain energy
density values derived from yarn pattern simulation at node points
sampled in the HYLC strain space. This process forms a consti-
tutive model, enabling highly realistic simulations in continuum-
based cloth simulators.

However, even with the implementation of positive definiteness
correction [Kim 2020; Kim et al. 2019; Teran et al. 2003; Wu and
Kim 2023] to eliminate negative eigenvalues in the Hessian ma-
trix, the HYLC method’s simulation time step remains restricted
to around 10~4 s in a Newton-type solver without line search, pos-
ing challenges for its application in interactive environments. This
limitation is partly due to the discontinuity of second-order deriva-
tives at the interpolated node points of the strain energy density
function. While Hermite interpolation ensures gradient continuity
at these node points, it does not address discontinuity in second-
order derivatives.

Inspired by recent advancements in Al for science [Wang et al.
2023] and in the design of neural material models [Li et al. 2023a],
we introduce a neural-assisted homogenization method for large
time-step simulations of yarn-level clothing. The key insight of our
approach is leveraging neural networks to allow greater flexibility
in material model design. A network-based representation elim-
inates the need for meticulously choosing functions to describe
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nonlinear material behavior and overcomes the limitations of tradi-
tional spline interpolation, such as restricted-order derivative con-
tinuity at node points. Building on this concept, our method in-
volves training neural networks with synthetic strain energy den-
sity data. We utilize the network’s capacity to incorporate smooth
activation functions in neurons, thereby enabling the creation of
a neural network with smooth derivatives for representing the hy-
perelastic constitutive model. Specifically, we employ the sigmoid
activation function and introduce a regularization strategy. This
strategy involves penalizing the magnitude of third-order deriva-
tives during training, which reduces oscillations in the second-order
Hessian of the neural constitutive model. Such an approach signif-
icantly improves the performance of Newton-type solvers, which
are prevalent in implicit simulators [Baraff and Witkin 1998].
While penalizing the third-order derivatives of Hermite interpo-
lating functions, as used in [Sperl et al. 2020], is possible, directly
optimizing the numerous coefficients of Hermite basis functions
presents challenges. This difficulty is due to the high-dimensional
parameter space inherent in the HYLC strain space, making the
process both complex and time-consuming. From this perspective,
our neural constitutive model offers a more compact and efficient
representation of the high-dimensional Hermite interpolating func-
tions within HYLC. It also addresses the issue of discontinuity in
second-order derivatives at node points. Once trained, we convert
our neural constitutive model back into analytic basis functions,
thereby bypassing the computational overhead associated with de-
rivative calculation through the neural network’s computational
graph. Furthermore, acknowledging that the behavior of yarn fluc-
tuation in yarn-level simulation remains relatively stable across
the HYLC strain space, we have developed a sector-based warm-
start procedure. This approach significantly accelerates the data
collection process. Our contributions are summarized below.

o A neural constitutive modelin Section 5.  We present a neu-
ral constitutive model, designed to deliver stable and realis-
tic results in continuum-based simulations. We define the
stability as simulation stability without line search. The key
factor contributing to this model’s stability is the smooth-
ness of the second-order derivatives of the model represent-
ed by neural networks. Additionally, we propose an effi-
cient, parallelized baked implementation, enabling seamless
integration of our model into a continuum-based cloth sim-
ulation.

Sector-based warm-start for yarn pattern simulation in Sec-
tion 4. The essence of numerical homogenization is the

derivation of the strain-energy density function from syn-
thetic data generated by yarn pattern simulation. To ful-
fill this task, we introduce a sector-based warm-start strat-
egy that significantly reduces simulation costs. This strat-
egy leverages the deformation history of the yarn structure,

leading to one order-of-magnitude speedup compared to sim-
ulation from scratch.

Safeguard strategy for constitutive model in Section 6.  To

enhance simulation stability under significant deformations,

we devised a safeguard-based strategy for the constitutive

model. This method uses a near-quadratic expansion tech-
nique to extend the neural constitutive model beyond its
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trained domain, thus improving the stability of the conti-
nuum-based simulator when deformations are out of trained
region.

Our experiments demonstrate that a continuum-based cloth simu-
lator with our model can achieve 15FPS simulation for 14K vertices
on a desktop PC with an Intel i9-10850K CPU, as Fig. 1 shows.

2 RELATED WORK

2.1 Yarn-Level Cloth Simulation

Yarn-level simulators, as shown by Kaldor et al. [2008], offer highly
realistic cloth simulations by modeling individual yarn dynamics
and inter-yarn contacts. However, they require smaller time steps
than continuum-based simulators due to the nonlinearity of yarn
dynamics and the challenge of managing numerous contacts. Pizana
et al. [2020] proposed a stable bending model for yarn dynam-
ics to enhance stability, while incorporating dissipation energy is
another effective approach [Sanchez-Banderas and Otaduy 2017,
2018].

The complexity introduced by the fine-grained modeling in yarn-
level simulators is significant. The adaptive contact approach [Kaldor
et al. 2010] was proposed to reduce the computational cost by re-
using contact information. Subsequent works [Cirio et al. 2014,
2016] and [Sanchez-Banderas et al. 2020] adopted persistent con-
tacts between yarns to improve performance, but this simplifica-
tion limits the generality of yarn-level simulators. As an alterna-
tive, Casafranca et al. [2020] proposed a method that combines
continuum-based modeling with yarn-level modeling. This hybrid
approach employs yarn modeling specifically in critical regions
while employing continuum-based modeling in less significant ar-
eas, offering a more flexible and efficient solution for applying
yarn-level simulations.

2.2 Continuum-based Simulation and
Homogenization

Since the seminal work of Baraff et al.[1998], there has been a
surge of research aimed at enhancing the efficiency and realism
of continuum-based cloth simulators. For example, the (extended)
position-based dynamics framework [Macklin et al. 2016; Miiller
et al. 2007] innovates by substituting traditional cloth dynamics
with positional constraints, thereby achieving stability even in the
presence of high stiffness. Additionally, the projective dynamics
framework [Bouaziz et al. 2014; Overby et al. 2017] integrates a
local projection step with a global solving step, constituting a sin-
gle iteration of a rapid solver. This framework has been further
extended for parallel implementations [Li et al. 2023b; Wang and
Yang 2016].

The realism of continuum-based cloth simulation depends on
physical parameters. Both optimization-based methods [Bickel et al.
2009; Miguel et al. 2013; Wang et al. 2011] and learning-based meth-
ods [Feng et al. 2022; Yang et al. 2017] can be used to measure phys-
ical parameters of fabrics. Simulation realism can also be enhanced
through numerical homogenization techniques derived from yarn-
level simulations. Numerical homogenization involves learning the
macroscale constitutive model from microscale simulations [Guedes
and Kikuchi 1990]. Reviews of numerical homogenization can be
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found in [Geers et al. 2010; Matous et al. 2017]. Recently, numerical
homogenization [Chan-Lock et al. 2022; Fei et al. 2018; Montazeri
et al. 2021; Zhang et al. 2023] has gained popularity in the graphics
community. Sperl et al. [2020] proposed homogenization of yarn-
level cloth with large strains, enabling the simulation of character-
istic features of yarn-level cloth in continuum-based simulators.

2.3 Deep Neural Network Constitutive Model

In material science and computational physics, researchers started
exploring the idea of incorporating neural networks into consti-
tutive models, since the early work by Ghaboussi and Ellis [1992;
1991]. Unlike analytic constitutive models, neural networks, as uni-
versal approximators [Hornik et al. 1989], can represent complex
functions through a few layers [Lefik and Schrefler 2003]. This
capability lends them excellent realism when used in simulators
based on an accurate fit for experimental data, as shown in [Li et al.
2023a]. Compared to other data-driven methods, such as piece-
wise linear functions [Huang et al. 2019], support vector machines,
or radial basis functions, neural networks provide smoother results
while maintaining simplicity in design, implementation, and con-
trol.

Providing the external boundary condition and corresponding
macroscale deformation in a global setting, the neural constitutive
model can be trained with a differentiable simulator [Huang et al.
2019; Xu et al. 2021]. However, this method is expensive since each
network weight update necessitates a scene simulation. A more di-
rect way is to train the neural constitutive model with sampled
strain-stress or strain-energy data, for elasticity [Shen et al. 2005],
elasto-plasticity [Lefik and Schrefler 2003], steels with hysteresis
[Wang et al. 2022], and laminated fabrics [Gao et al. 2022]. Co-
lasante et al. [2016] proposed a method to build a network-based
constitutive model for the in-plane deformation of fabrics. Other
works train the network on homogenized data, including both elas-
ticity [Le et al. 2015] and in-elasticity [Logarzo et al. 2021].

Constitutive models trained using strain-stress or displacement-
nodal force frameworks risk violating conservation laws when the
stiffness matrix lacks symmetry. To address this, our approach fo-
cuses on learning strain energy density functions. This choice en-
sures the preservation of stiffness matrix symmetry in our method,
as in [Li et al. 2023a].

3 BACKGROUND

Since our method employs the yarn pattern simulation in HYLC
[Sperl et al. 2020], to prepare training data and develop neural net-
works to represent the macroscale strain energy density function
defined in it, we briefly introduce the formulations of these two
components for the purpose of clarity.

Notations. The macroscale deformation of the mid-surface,
i.e., the local planar patch to which the yarn pattern is attached, is

determined by the macroscale strain s:

L z} [Io IlJ
s= |yl -1 Vh—-1 A4 Ay |, I= ¢!
0 Viplp 2 ! 2 L D ( )

where I is the first fundamental form of the mid-surface, and A;
and Ay are the maximum and minimum eigenvalues of the sec-
ond fundamental form, respectively. The last entry, ¢, signifies the
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squared cosine of the angle between the eigenvector correspond-
ing to A; and the x-axis. We denote the i-th component of s as s;.
For example, so = VI - 1.

Yarn pattern simulation. It is designed to minimize the defor-
mation energy model in the Discrete Elastic Rod (DER) [Bergou
et al. 2008] method to replicate the stretch, bending, and twisting
dynamics of yarns, where the contacts between yarns are resolved
using Kaldor’s [2008] repulsion formulation. Specifically, given a
node point s in HYLC strain space, yarn pattern simulation can be
formulated as a constrained optimization problem:

¢s = min gpar(w), st C(u,s) =0, )

where the yarn fluctuation vector u = [uO, ul, ll"_l], u’

is the Cartesian displacement of the i-th vertex with respect to the
initial position defined by the deformed mid-surface, and 7’ is the
twist displacement of the i-th edge. We integrate the homogeniza-
tion energy, denoted as @pat, and the constraint function C(u, s),
as established in [Sperl et al. 2020]. The term @pat encompasses the
yarn’s elastic energy and the contact potential between yarn seg-
ments, effectively representing these two energies. Meanwhile, the
constraint C(u, s) serves to regulate the periodicity and the fluctu-
ation within the yarn patterns.

Macroscale strain energy function.  To circumvent the curse of
dimensionality of s in the HYLC strain space, we adopt the simpli-
fication approach utilized by [Sperl et al. 2020] and [Miguel et al.
2016] , which decomposes the six-dimensional energy density func-
tion into a combination of a constant component as well as one-

and two-dimensional functions. For any node point s, we define

2
\I,stretch(s) — Z ¥ip,i(si) + Z ¥op,i,j (si,s5),  (3)
i=0 {i.jre{{0,1},
{0,2},{1,2}}
for
\P}’B“d(s) =c? [¥1p,3(s3) + ¥1p.a(s4)] @)
+(1-¢®) [¥ip3(ss) + ¥ipa(s3)],
and
2
\yggnd(s) = Z [cz‘I’i,3(si,S3) +(1- cz)‘l’i,3(8i,84)]
i=0
) (5
+ Z [c*Wia(sinsq) + (1 — ) Wia(sis3)] .
i=0

where we simplify ¥,p ;; to ¥;;. The strain energy density func-
tion ¥(s) is defined as:

¥(s) = ¥o + PN (s) + wPend (s) 4+ ghend(s), )

where ¥ is the constant strain energy density value for the
yarn pattern when s = 0, i.e, no deformation is applied to the
mid-surface.

4 DATA COLLECTION WITH WARM-START

We gather training data, comprising pairs of macroscale strain from
the mid-surface and the corresponding strain energy density val-
ues, via yarn pattern simulation for four patterns: basket, stock-
inette, honeycomb, and cartridge belt rib, as illustrated in Fig. 2.
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(a) Basket

(b) Stockinette

(c) Honeycomb (d) Cartridge

Figure 2: Four periodic yarn patterns used for evaluation
purposes in our experiments. For the sake of simplicity, we
abbreviated cartridge belt rib as cartridge and slip stitch hon-
eycomb as honeycomb throughout the remainder of this pa-
per.

The primary objective of our warm-start strategy is to expedite
the pattern simulation process. This is achieved by initializing the
solution at a given node point in the strain space using the solu-
tion from a neighboring point. [Zhang et al. 2023] explores a BFS-
based warm start strategy for homogenizing planar flexible struc-
tures. Despite its benefits, it struggles with control and scalability
due to limited parallelism. Conversely, we suggest a sector-based
strategy, improving concurrency and addressing these issues. We
elaborate on our method in this section.

To enhance the parallelism of the warm-start procedure, we em-
ploy sectors to group node points. While a simple warm-start strat-
egy in the HYLC strain space is to propagate the solution at a
node point to its neighboring points, it is not friendly to parallel
implementation. To address this issue, we refine our warm-start
strategy by categorizing node points into different sectors accord-
ing to their polar coordinates, as illustrated in Fig. 3 for the 2D
case. In practice, we use 64 sectors in 2D and two sectors in 1D.
The solution propagation can then be done with sector-level paral-
lelism. We warm start a node point by using results from a point
within the same sector to which it belongs. Within each sector, we
first build an edge for a node point s; by selecting a node j satisfy-
ing argmin; {||si =sill : lIsjll < lIsill, j € [O,LN = 1], # i}. We use
breadth-first search to traverse the node points in the sector and
select the node point closest to the origin to serve as the root. This
way, we can propagate the solution from node points with small
strains to those with large strains.

Given the warm-start strategy for yarn pattern simulation, we
must determine the sampling range and sampled node points next.
We choose different sampling ranges for different components in
the macroscale strain. For in-plane strain components, we set the
sampling ranges as follows: sg, s, € [—0.5,0.8],and s; € [-0.5,0.5].
For out-of-plane strain components, we choose a sampling range
of s3,54 € [-250,250]. The sector-based warm-start strategy is
then applied to accelerate pattern simulation by breaking the 1D
sample ranges into sub-intervals and 2D sample ranges into sec-
tors. Consequently, we obtain five 1D strain energy datasets ¥p ;
for i = {0,1,2,3,4} and nine 2D strain energy datasets ¥3p ; i for
network training in Sec. 5. We also calculate the derivatives V; ¥ p ;
for the 1D dataset and V;¥2p ;j, Vj¥2p,;; for the 2D dataset using
finite difference methods for network training later.

Our warm-start strategy accelerates the homogenization pro-
cess, yielding a tenfold increase in speed. Additionally, this strat-
egy is versatile, extendable to any dimensional space by defining
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(a) Eight sectors of strain samples. (b) The simulation sequence (in white)

Figure 3: Strain sample sectors. As shown in (a), we catego-
rize 2D strain samples into multiple sectors. Within each sec-
tor, we gather training data by executing yarn pattern simu-
lation. This process involves progressively increasing strains
in a specific pre-defined sequence, as shown in (b).

an N-sphere. Please refer to the supplementary document for more
details about yarn pattern simulation and data collection.

5 NEURAL CONSTITUTIVE MODEL
TRAINING

We choose to represent each 1D and 2D function in Eq. 5 with
separate neural networks. This choice is due to their compactness
compared to other bases like Hermite interpolation. For example,
in the case of 2D functions with 101x101 sampling points, a neu-
ral network with 1,137 parameters can represent the relationships
while we need 16,000 coefficients for bicubic Hermite interpolation.
Specifically, we use five neural networks W;(s;) for 1D functions
and nine neural networks ¥; 7 (si, sj) for 2D functions. Specifically,
there are a total of five neural networks ¥;(s;) used to represent
1D functions and nine neural networks ¥; j(si,sj) used to repre-
sent 2D functions. These trained networks are summed together
to form the neural constitutive model used in our work. The net-
work architecture is simply a three-layer MLP with a sigmoid acti-
vation function at each neuron. We will use ¥;(s;) to denote both
1D and 2D functions when the context is clear. A sample point in
the dataset is denoted as s}" correspondingly.

The total loss function involved in network training is a weighted
combination of four loss terms:

Lfmal(sl;e) = WZLIZ(SI) + wFLf(sl;e)

+wCLE (sp;€) + wOLY (sp).

™)

Next, we provide the purpose and the definition of each term.
We justify the network architecture and offer training details in
supplementary materials.

5.1 Zero-Order Prediction Loss

This loss term is designed to prompt the networks to reproduce the
values of the strain energy density function at the points sampled
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in the training dataset, resulting in:

1 & 2
s =5 (W - ls) ®)
d=0
where M is the number of samples, and d indices through the sam-
ples in the training data.

5.2 First-Order Prediction Loss

This loss term penalizes the deviation of the first-order derivatives
of ¥y with respect to the derivatives calculated for points in the
training data. It is important for the approximation accuracy of
the trained networks. To ease the implementation, we leverage fi-
nite differences to approximate the first-order derivatives of neu-
ral networks and the sampled points. Consequently, for the 1D
neural constitutive model ¥;, we have G(¥;, si;€) = (¥;(s; +¢€) —
W;(s:))/e. For 2D functions ¥; 7, we approximate their derivatives
as f(zllows: Gi(‘i’ij,si, sji€) = (‘ifij(s}- +655) — ‘i’ij(si, sj))/e and
Gj(Yij,si,sjs€) = (Wij(si, sj + €) — ¥ij(si, 7)) /€. The small inter-
val € is set to 1073 by default. The first-order prediction loss Lf for
networks ¥} is formulated as:

SN (G(Wij s e) = V¥, )2, i#r=1
M
1 i d .d d 2
LFispie) = — 1 D (Gitiyosf st = Vi, )
1(s15€) = 4 ;) v YT = g,
+(Gj (¥, 59, S;?; €) - VjWgD,ij)z)’

©)
where V;¥1p ; and V;¥,p ;; denote the first-order derivatives com-
puted for sample points.

5.3 Third-Order Derivative Loss

This loss is employed to penalize the third-order derivatives of net-
works. By minimizing the magnitude of third-order derivatives, it
can make the quadratic approximation of its function in the local
region much more accurate. Thus, it is critical for the stability of
the simulator in a large time step without line search. Empirically,
we observe that applying the third-order derivative loss effectively
suppresses the oscillation of second-order derivatives in elastic en-
ergy. For these networks trained on the 1D strain dataset, it is easy
to estimate and penalize their third-order derivatives:

N N N N 2
LE(si€) = 505 Pilsi+2€) —2%i(si +€) + 2% (si — €) — Wi (si = 2€)| .
(10)
For constitutive networks trained on 2D strains, there are four
unique third-order derivatives of ¥;;, which can be selected as

P¥ij/3s}, Yy /astasj, 9 Vi asids?, 9> ¥ij/3s). For instance,

33\?,-j 1 /. X
3~ 203 ( ij(si + 26, 55) — 2¥;;(si +€,55)

9s; € (11)

+2‘i’ij(s,- —€,55) — \ilij(si - 2€,Sj)),

and the third-order derivative loss for neural networks that repre-
sent 2D functions is formulated as follows:

P \2 v\ oy | ()
Clo: crey = |2 ¥ i) i i
LijGsisjs€) = ( 5.3 ) +(asizasj) +(asiasj2) +( as° ) - (12)
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A general form of third-order derivative loss can be expressed as

ifI =i,

=gy 1Y

1Bl L (e,
M

C

Ly (s;;€) = —

1 > M Ccd .
Zd:OLij(si’sj’e)’

5.4 Strain Concentration Loss

The primary objective of this loss is to regulate the network’s be-
havior for points that lie outside the effective area covered by the
training data. In the absence of ground-truth values for the strain
energy density function at these external points, inspired by the fit-
ting strategy in [Sperl et al. 2020], we impose a different constraint:
the negative gradients at these points should approximately direct
towards the point s = 0. This approach ensures that the strain val-
ues do not increase outside the sampled region, but rather concen-
trate around the central point s = 0. This concentration is achieved
as the deformation energy is minimized, adhering to the gradient
constraints. The formulation of this loss is:

LM D(Gi(‘?i,sgig;le);lsg) ] ifI=i
LY(sp) = i Z D(Gi(¥ij. 57, s55€).57) 1= (i) (14)
=0+ D(Gj(Wyj, ¢ 5%5€),59) o

where D(x,t) = (1 = Jsign(x),Sign (1)) X = Sign(t)|%. G denotes
the function used to compute derivatives, as in the first-order pre-
diction loss.

6 NETWORK BAKING AND SAFEGUARDING

Next we discuss practical issues involved in the use of our neu-
ral model, including network baking for fast runtime performance,
and safeguarding when deformations are beyond the sampled re-
gion.

6.1 Network Baking

Conducting neural network inferences on the fly at each time step
would be too expensive in continuum-based cloth simulation. The
goal of network baking is to avoid runtime inferencing by convert-
ing the network defined in HYLC strain space back to Hermite
interpolating functions, which can significantly boost the simula-
tion performance. In the Karate demo in Fig. 7, the simulation cost
is reduced from 510 ms (without baking) to 65ms (with baking)
per frame. Note that baking back to Hermite interpolating func-
tions does not lead to large second-order discontinuities. Since the
network is trained with a third-order derivative loss, the function
that the network represents in each sub-region can be well approx-
imated by quadratic functions realized by Hermite interpolating
functions.

The baking can be achieved by evaluating the function values
and first-order derivatives at sampled points for 1D or 2D stretch-
ing and bending functions, and piecewise Hermite interpolating
functions are constructed for each sub-interval in 1D or sub-squared
region in 2D. These functions can be directly located according to
the vector s and calculated in the continuum-based simulator.

In our experiments, we use 200 cubic Hermite functions for 1D
and 100x100 bi-cubic Hermite functions for 2D.
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6.2 Safeguarding Strategy

When applying the learned strain energy function to continuum-
based cloth simulation, the macroscale strain of a triangle might
fall outside the region covered by the sampled node points. It can
lead to unstable simulation results if not carefully handled. There-
fore, we propose a safeguarding strategy to enforce the Hessian
matrix for these strain points to be close to the points on the bound-
ary of the sampled region. This is realized by constructing analytic
quadratic functions that equate their function values and deriva-
tives to the derivatives at the boundary points of the sampled re-
gion in a sector-based manner. Subsequently, these functions are
used as the strain energy density functions for those points out-
side the sampled region. This strategy mitigates discrepancies in
second-order derivatives of constitutive models within and outside
the sampled region, thus improves the stability of the simulation.

Let [s;m“, s;"®] be the sample ran-
ge for a neural network ¥; that represents one of the 1D stretching
and bending functions in Eq. 5. We first calculate the function val-
ues (\i/lmin’ ‘i’lmax), first-order derivative (g?‘in, gi"®), and second-
order derivatives (h?‘in, h"®) at its endpoints. With these quanti-
ties, we then construct a quadratic function Sip ; as

6.2.1 One-dimensional case.

aminsi2 + bminSi + Cmins if s; < S?ln,
— 2 .
S51D,i(51) = | GmaxS; + bmaxSi + Cmax: if s > smaX (15)
Wi (si) otherwise.

where the coefficients for s; < s?lin are computed by equating the
function value and derivative of the quadratic function to these

values of the network ‘i/lD,i at slr.nin, which yields:

1 vmi . .
{ Amin = Eh;mn’ bmin = g;mn - zamins?lm, (16)

— rmin min\2 min
Cmin = f; - amin(si )" - bminsi .

The coeflicients, amax, bmax, Cmax, can be computed in the same
way. It can be verified that the above safeguard function maintains
C? continuity at the endpoints of 1D sample ranges.

6.2.2 Two-dimensional case.
large number of boundary points in the 2D case, and we must de-
termine the choice of boundary points before constructing the qua-
dratic energy density function for a point x = (s;,s;) outside the
sampled region. Therefore, we choose to divide the 2D plane into
N sectors, similar to the warm-starting approach, and construct a
quadratic function at each edge between two neighboring sections.
Once constructed, the quadratic function for any point x is com-
puted through the linear blending of two functions constructed at
the two boundary edges of the sector to which x belongs. This de-
sign transforms the 2D quadratic function construction problem
into several 1D problems.

Suppose we divide the 2D sample region into N sectors uni-
formly around the origin. For the k-th sector, it contains all of
the points with their polar angles between ¢y and ¢y, where
ok = Zﬁ’rk. If we have constructed 2D quadratic functions, Gl]Fj and

Unlike the 1D case, there are a

ij“, at its left and right edges, respectively, the quadratic energy
density function Syp ;;(si,sj) for a point (s, s;) in this sector but
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Figure 4: Ablation studies conducted on the hanging simulation of a 20cmx20cm fabric sample. We demonstrate the crucial
roles of three specific losses: the first-order prediction loss, the strain concentration loss, and the third-order derivative loss.
Each of these losses contributes uniquely to the accuracy and stability of the simulation, highlighting their importance in our

model.

outside the dataset’s effective region Q is

wclkj(si,s,-) +(1- w)ij(si,sj), if (si,57) ¢ Q

Sop,ij(si,85) =4 -
Wij(si, $5)s

otherwise

(17)
We construct Gll.cj by equating the function value, gradient, and Hes-
sian to the endpoint of the sector boundary edge, similar to the 1D
case. w is the polar barycentric coordinate of the point in this sec-
tor. Given the function value f, the gradient g, and the Hessian
matrix Hy of ¥; j, we calculate Gll.cj as

Si

lej(s,-,s]'):[s,' Sj]Ak s +[Si Sj]bk*'ck, (18)

in which

{ Ar = 3Hy, by = gk — 2Axt (19)

T T
Ck = fk - tkAktk - bktk~

In the 2D case, the employed strategy generates a piecewise lin-
ear approximation along the boundary, which results in the discon-
tinuity of the energy function at the boundary. Although this dis-
continuity cannot be eliminated, it can be mitigated by increasing
the number of sectors. We find that the expansion approach suc-
cessfully smooths out the differences in the second-order deriva-
tives of constitutive models inside and outside the trained region,
improving the simulation stability. In our implementation, we set
the number of sectors to 128, which works well empirically.

Table 1: Quadratic expansion error E analysis for Stock-
inette pattern. This analysis shows our model has a lower
quadratic expansion error, i.e., smaller magnitudes of third-
order derivatives. For the definition of quadratic expansion
error E and details on its computation, please refer to the
supplementary material.

Type ‘ Basket Stockinette Honeycomb Cartridge
[Sperl et al. 2020] | 1.31e-3  2.67e-3 5.37e-3 1.60e-3
Ours 6.28e-4 4.05e-4 1.73e-3  1.26e-3

7 RESULTS

(Please refer to the supplemental video and document for addi-
tional examples.) Our continuum-based simulator runs on CPUs
and it utilizes implicit Euler time integration in conjunction with
our neural constitutive model. It employs a hierarchical grid [Fan
et al. 2011] for proximity search and handles contacts by impulse-
based approaches [Bridson et al. 2002; Narain et al. 2012]. In this
paper, we define stability as the implicit simulation stability with-
out line search. By default, we use Newton’s method to solve time
integration with no backtracking line search. (The step size is fixed
at one.)

In the simulation of a T-shirt with 14K vertices, as shown in
Fig. 7, with a time step of At = 1/30s, the computational time for
one timestep is divided as follows: 16ms for calculating the trian-
gles’ fundamental forms [Grinspun et al. 2006]; 10ms for accessing
the constitutive model; 15ms for matrix assembly and solving lin-
ear systems; and 26ms for collision detection and handling.

7.1 Ablation Studies

In ablation studies, we focus on the hanging simulation of a square
fabric sample. Figure 4(a) illustrates the significance of the first-
order prediction loss, LT, in preventing distortions in the reference
configuration, which are typically caused by incorrect internal for-
ces. Figure 4(b) highlights the necessity of the strain concentration
loss, LB , for maintaining a monotonically increasing strain energy
density function outside of the sampled region (in blue). Absence
of this loss leads to an incorrect decrease in energy as strain in-
tensifies (in red arrows). Finally, Figure 4(c) demonstrates that in-
creasing the weight of the third-order derivative loss, wC, from 0
to 1073 enhances the largest stable time step from 1/5000s to 1/30s.

7.2 Stability Evaluation

A key reason for the stability of our simulations is attributed to
our model’s smoother third-order derivatives, as shown in Fig. 5(a).
This characteristic enables our model to provide an accurate qua-
dratic expansion. To support this claim, we uniformly sampled 10K
points from each 2D baked constitutive model, integrated their
quadratic expansions, and conducted a comparative analysis. The
results, presented in Table 1, reveal that the quadratic expansion
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error of our model is 20 to 80 percent lower than that of [Sperl et al.
2020].

Without backtracking line search, the stability issue in a con-
stitutive model becomes apparent through its inability to perform
simulations at large time steps. This is demonstrated in the two an-
imated examples in Fig.6. In these examples, simulations using our
model run robustly with a time step of At = 1/30s. In contrast, sim-
ulations employing the HYLC model, as proposed in [Sperl et al.
2020], fail when the time step is At = 1/1000s only. Addition-
ally, Fig. 7 highlights our model’s capability to simulate knitted
garments on rapidly moving avatars, when using large time steps.

With backtracking line search, simulations should be able to run
stably at any large time step. However, the challenge shifts to de-
termining how small the step size should be to ensure stability. As
depicted in Fig.5(b), our model maintains stability with At = 1/30s
by simply setting the step size to one, as expected. In contrast, the
HYLC model requires a significantly smaller minimal step size to
achieve stability. This disparity is also observed when our simula-
tor employs the gradient descent solver with Hessian precondition-
ing [Wang and Yang 2016]. This suggests that the stability issue is
a universal concern, independent of the choice of solver.

7.3 Accuracy Evaluation

To assess the accuracy of our model within continuum-based sim-
ulators, we executed an experiment involving the simulation of
stretching a stockinette fabric strip measuring 5cm by 12cm, in
both the course and wale directions. For comparison, we use a
ground truth generated by a DER-based yarn-level simulator [Bergou
et al. 2008]. As depicted in Fig. 8(a) and 8(b), our model’s simula-
tion closely mirrors the real-world Poisson and curling effects ob-
served in the middle of the fabric strip, with Hausdorff distances to
the ground truth being 0.69cm and 0.72cm, respectively. This con-
trasts with the results from the HYLC model proposed in [Sperl
et al. 2020], which deviates from the ground truth, with Hausdorff
distances exceeding 1.0cm. Furthermore, Fig. 8(c) compares the
relationship between force density and stretch ratio as predicted
by our constitutive model and the HYLC model. This comparison
reveals that our model’s predictions align more closely with the
ground truth.

8 CONCLUSIONS, LIMITATIONS AND
FUTURE WORK

This study presents a novel neural-assisted homogenization method
for yarn-level cloth, enhancing both efficiency and precision in
continuum-based simulations. Using sector-based strategies and a
neural constitutive model, our simulator exhibits remarkable sta-
bility with larger time steps while maintaining accuracy, as vali-
dated by qualitative experiments.

Our method uses synthetic data from yarn simulations, not real
data, impacting the realism of our simulations. Our model omits
higher-dimensional strain energy components, affecting accuracy.
The considerable costs of data collection and network training, es-
sential for fabric design, are noteworthy. We plan to address these
limitations soon, particularly by considering real-world data col-
lection. Our ultimate goal is a unified model for wider applications,
expected to enhance our method’s realism, accuracy, and usability.

Xudong Feng, Huamin Wang, Yin Yang, and Weiwei Xu
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Figure 5: Stability analysis based on third-order derivatives and minimal step sizes. As depicted in (a), our model exhibits smoother and
smaller third-order derivatives compared to the HYLC model referenced in [Sperl et al. 2020]. This indicates that our model is suitable for
stable simulations and can accommodate greater minimal step sizes in both Newton’s method and the preconditioned gradient descent method

as shown in (b).
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Figure 6: Animation examples simulated with our model and the HYLC model, as referenced in [Sperl et al. 2020]. While the simulations with
our model run stably at Az = 1/30s in both examples, the simulations with the HYLC model fails even when At = 1/1000s.
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Figure 7: Knitted garments simulated with our model on rapidly moving avatars. Thanks to the stability of our model, the continuum-based
simulator can robustly simulate these examples at At = 1/30s, without backtracking line search. (The step size is fixed at one.)
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Figure 8: A uni-axial stretching experiment involving a stockinette fabric strip. Our model demonstrated its accuracy in continuum-based
simulation when compared with the ground truth. This accuracy is evident both qualitatively, as seen in the Poisson and curling effects in
the middle of the strip depicted in (a) and (b), and quantitatively, as illustrated by the correlation between force density and stretch ratio
shown in (c). The ground truth is simulated using a yarn-level simulator. The results of our method and [Sperl et al. 2020] are obtained using
a continuum-based simulator but are rendered with yarn mapping for enhanced visual effects.
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